
Research Statement
Matteo Brucato
matteo@cs.umass.edu

My research focuses on augmenting data management systems to better support data science, all stages
of analytics, with special emphasis on predictive and prescriptive analytics, and faster and easier decision
making. The main goal of my research is to democratize data science and decision making in a variety of
practical applications, across different disciplines and industries. In my research conducted so far, I built
complete and efficient data management systems able to support a broad class of decision-making problems
that can be expressed as integer linear programs (ILP), on both certain and uncertain data. My current
and future research aims at enlarging the scope of these systems to even broader classes of problems. Given
the complexity and the broad scope of my research endeavors, my work has been largely interdisciplinary,
spanning also other research areas such as natural language processing [17] information retrieval [19], text
summarization [30], AI and robotics [6], it led to numerous top-tier publications and it has been recognized
by various ACM awards.

Data grows at a much faster pace than the ability of existing data management systems to make full
use of it. And while it grows, so does our awareness of the missed opportunity of its exploitation, pushing
firms, organizations and associations to demand more efficient systems, able to perform increasingly complex
operations. Embarrassingly, today’s systems offer little to no support for decision making when the data is
large enough for the decisions to be actually useful [32, 10, 35, 43, 7]. In business applications, making the
most out the available data often means finding the most profit-maximizing decisions, which is crucial to
ultimately achieve a company’s growth objectives. This decision-making process travels through the whole
Business Analytics pipeline, typically involving four steps: (i) Descriptive analytics, which allows businesses
to analyze their massive data sets, through visualizations, summarization, and complex statistical analysis;
(ii) Diagnostic analytics, which tries to explain “why” we see certain patterns, trends, or errors in the data, via
complex explanation and error diagnosis tools, causality, and provenance analysis; (iii) Predictive analytics,
which makes use of the insights of diagnostic analytics to build models that can predict “what is going to
happen” in the future; (iv) Prescriptive analytics [9], which reaches the final goal of using predictions to
make better decisions and answer the question “what to do now?” Unsurprisingly, as you move along the
analytics pipeline, the complexity increases, and unfortunately, the existing support for its efficient execution
decreases. My research focuses on the harder side of the analytics spectrum, hitherto mostly disregarded by
modern data management systems.

In my dissertation research, I have laid out the first, most fundamental steps towards practical decision-
making systems able to make use of large data sets that are crucial for modern applications. My research has
revolved around a new class of database queries that naturally embody a fundamental category of constrained
optimization problems: integer linear programs (ILP). The embodiment of an ILP, in a relational database
setting, is what we called a “package query” [31, 20, 12, 21, 15, 13]. A table stores all the possible decisions
that are available to the decision maker, in the form of records, and the package query defines which sets
of records form a feasible solution, and a criterion to identify good solutions. For example, a tuple may
represent an investment option, and a package query allows the decision maker to express an objective
(e.g., selecting an investment portfolio that maximizes the revenue) as well as the constraints that limit
the available options (e.g., budget constraints). Package queries connect interesting business applications
with the data used to make decisions, in a very natural way. While package queries capture many of the
interesting decision-making problems businesses face today, there are more complex ones that fall outside
of their scope. I believe that the lessons learned on package queries can fundamentally change the future of
research for creating scalable systems for decisions making for larger and more diverse classes of problems.
My ultimate goal is to bridge the gap between the optimization problems that can most positively affect
society and the ability of data management systems to support them.
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1 Selected Research Accomplishments

Declarative and Scalable Prescriptive Analytics in Relational Data
In my dissertation research, I introduced “package queries” [14, 20], a new query model that extends tradi-
tional database queries to handle complex constraints and preferences over answer sets, allowing the declar-
ative specification and efficient evaluation of a significant class of constrained optimization problems–integer
programs–within a relational database. While traditional database queries define constraints that each
record in the result must satisfy, package queries also require a collection of result records to satisfy con-
straints collectively, rather than individually. These combinatorial optimization problems arise in a variety
of real-life application domains, such as coordinating fleet and crew assignments in airline scheduling to
reduce delays and costs [41], managing delinquent consumer credit to minimize losses [36], crowdfunding op-
timization [11], optimizing organ transplant allocation and acceptance [5], planning of cancer radiotherapy
treatments [42, 45], product bundles, course selection [39], team formation [8, 34], text summarization [30],
vacation and travel planning [27], and computational creativity [40]. Many of these problems can be ex-
pressed as integer linear programs (ILP). ILP solutions alone account for billions in US dollars of projected
benefits within each of these and other industry sectors [26].

Furthermore, some of these optimization problems are stochastic. Suppose each row in a table contains
a possible stock trade an investor can make: whether to buy one share of a certain stock, and when to sell
it back. Building a financial portfolio is an example of a stochastic optimization problem. Given uncertain
predictions for future stock prices based on financial models derived from historical data, suppose an investor
wants to invest $1, 000 in a set of trades (decisions on which stocks to buy and when to sell them) that will
maximize the expected future gain, while ensuring that the loss (if any) will be lower than $10 with probability
at least 95%. Despite the clear need, modeling and solving these problems have relied on application-specific
solutions [8, 27, 34, 39, 40], which can often be complex and error-prone, and fail to generalize. Package
queries are a unified solution to enable declarative and scalable Prescriptive Analytics close to the data.
The goal of my thesis research was to create a domain-independent, declarative and scalable approach for
enabling Prescriptive Analytics, supported and powered by the system where the data relevant to these
problems typically resides: the database.

Declarative specification and semantics of packages
SQL enables the declarative specification of properties that result tuples should independently satisfy. How-
ever, it is difficult to specify global constraints, such as the maximum total amount of money the investor
is willing to invest when buying a set of trades. Expressing this SQL query is complex and inefficient. Our
Package Query Language (PaQL) is a simple extension to SQL to support constraints and objectives at
the package level. PaQL maintains the declarative power of SQL and its ability to express non-package
constraints, while extending its expressiveness to allow for the easy specification of packages. PaQL is at
least as expressive as Integer Linear Programming (ILP), which implies that evaluation of package queries is
NP-hard in data complexity. sPaQL (the Stochastic Package Query Language) [18, 21] further extends PaQL
to declaratively support expectation and probabilistic constraints or objectives on stochastic data. Draw-
ing from the stochastic programming literature [4, 25, 28], we also introduced translation rules to express
stochastic constraints and objectives into equivalent integer (generally, non-linear) constraints.

Evaluation of package queries
Due to their combinatorial complexity, package queries are harder to evaluate than traditional database
queries [29], and we proved that package queries are as hard as integer programs. Existing database technol-
ogy is ineffective at evaluating package queries, even if one were to express them in SQL. To overcome this,
we extended the database evaluation engine to take advantage of external tools, such as ILP solvers, which
are more effective for combinatorial problems. The core of this approach is based on the translation rules that
transform a package query to an equivalent integer linear program. Unfortunately, such exact translations
do not exist for the vast majority of stochastic package queries, for which the most general approach consists
on using approximate Monte Carlo translations [38, 23, 25, 28]). We brought these approximate techniques
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inside a probabilistic database [44] based on the Monte Carlo data model [33], and improved them to support
queries involving large input tables [21].

Performance and scaling to large data sets
Integer programming solvers have two major limitations: they require the entire problem to fit in main mem-
ory, and they fail when the problem is too complex (e.g., too many variables or too many constraints). We
overcame these limitations through sophisticated evaluation methods that allow solvers to scale to large data
sizes. The core of our evaluation strategy, SketchRefine, consists of separating the package computation
into multiple stages, each with small sub-problems, which the solver can evaluate efficiently. We proved that
SketchRefine guarantees a (1 + ε)-factor approximation compared to Direct, where ε ≥ 0 is a flexible
user-defined error parameter. A parallel version of SketchRefine [14] can also efficiently solve queries that
require most of the partitions to be accessed. Monte Carlo methods often require the generation of many
scenarios in order to produce feasible and close-to-optimal solutions. The data size creates new challenges
for stochastic package queries: the number of required scenarios grows very fast with the size of the input
table [25, 24]. Even with relatively small tables (order of thousands of tuples), the minimum number of
scenarios required to have any meaningful guarantee explodes to impractical sizes that no solver can handle.
Our technique, SummarySearch [21], compresses a large set of scenarios into a small set of “summaries”, so
that the solver can find feasible and close-to-optimal solutions very efficiently. We proved that if the state-
of-the-art technique can find a (1 + ε)-approximate solution—compared to the optimal solution obtainable
without summaries—in m iterations, SummarySearch is guaranteed to find a (1 + ε)-approximate solution
as well in at most 3m iterations.

2 Current and Future Research

Enlarging the capabilities of Package Query Systems
In my thesis research, I introduced a new class of database queries—package queries—that can model linear
optimization problems, with both deterministic and stochastic data. As a new area within database, my
research opens a plethora of new research directions. Hereby, I summarize the main ones I plan to work on
as part of my future research endeavors.

SketchRefine and SummarySearch solve two orthogonal problems: SketchRefine [31, 16, 14] deals
with deterministic package optimization on large tables; SummarySearch [21] solves stochastic optimization
that require too many scenarios. While the need for too many scenarios is a direct consequence of an
increased data set size, it can typically happen even with relatively small sizes. When the data set size
explodes, stochastic optimization becomes even more prohibitive, and SummarySearch alone may not be
sufficient any more. An important question is how to combine SummarySearch with SketchRefine, for
an end-to-end solution for stochastic problems at a very large scale.

In prior research [21], I developed methods to support individual probabilistic constraints, but some
stochastic problems require several inner constraints to be satisfied jointly. Joint probabilistic constraints
are a more challenging generalization of individual constraints. I plan to explore the applicability of existing
techniques from the stochastic programming literature to the context of large tables, and to possibly extend
SummarySearch, or develop new techniques for this challenging class of constraints.

In previous work, I addressed what is referred to as single-stage decision making under uncertainty, in
which decisions have to be made before the values of the random variables become known. However, many
applications require uncertainty to be revealed over time, i.e., in stages, allowing for remedial actions. These
dynamic settings, referred to as stochastic programming with recourse, are more challenging to address than
the single-stage setting. An important extension of my work is to study how to solve these complex problems
at a large scale.

As part of my thesis, I created systems that sit on top of an existing DBMS. Putting the solver inside
the DBMS is more challenging, as it requires a deeper integration with the system, such as: extensions to
the relational algebra, and to query planning and optimization; automatic fine-tuning of the solver package;
new fault tolerance mechanisms to deal with brittle solvers that fail due to unpredictable memory usage;
support for nested queries, including complex joins before or after package-level constraints. As a first step
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towards this, I plan to develop a deep integration of stochastic package queries into SimSQL [22], a database
system for stochastic analytics. In SimSQL, the basic relational operators were engineered to deeply support
Monte Carlo operations over relational data. In future research, I want to extend the operators to connect
the system to optimization solvers.

In differential privacy, one seeks to publicly release the results of a statistical aggregation query, such
as counting the number of cases a certain drug causes cancer, without giving away information about the
individuals who took part in the statistic, i.e., whether a certain person has cancer or not. Accurate differ-
ential privacy is hard to achieve even for simple SQL aggregation queries. Computing the result of a package
query on differentially private data poses new challenges. If packages are computed on the original data, how
do we output a package that protects the input data from being inferred? As the solver typically explores
a very large number of candidate solutions, it issues several SQL aggregation queries. Should the privacy
budget be divided among all of the aggregate queries? Or can it be spent entirely on the final result reported
to the user? In the first case, new challenges include: (1) maintaining differential privacy when the solver
computes hundreds of thousands of aggregates over the same input data; (2) privatizing each aggregate can
be computationally too expensive. If packages are computed on differentially private data, what are the
effects on the quality of the returned packages?

Beyond packages: Data management systems for more general Decision Making
Decision making is a central component of nearly every aspect of our society. Modern applications require
use of increasingly more data, rendering existing solutions inapplicable. As a result, approaches for decision
making often simplify the problems so much that solutions are either infeasible or highly inaccurate. One
of the main goals of a database system is to allow classes of computational problems (i.e., “queries”) to be
easily expressed and efficiently executed regardless of the size of the input data and the availability of special
hardware. With package queries, we allowed support for decision-making problems that can be expressed as
integer linear programs. In my future research, I plan to enable other, more complex kinds of applications.

A Markov Decision Process (MDP) is a decision-making framework where a decision maker (agent) has
to decide what actions to take at each time step (policy), given that actions lead to uncertain outcomes
(rewards). The agent’s objective is to maximize the expected future reward. Problems that can be modeled
as MDPs include reinforcement learning, robot planning, and self-driving cars, just to name a few, and
appear in a broad range of domains, including finance, investments, agriculture, robotics, etc. My goal is to
create a new data-oriented system for efficiently and scalably solving MDPs. The main challenges include:
simple and declarative languages, close to the data, for expressing large and complex state spaces for MDPs;
efficient and scalable algorithms for solving large MDPs [6]; support for evolving MDPs, where the agent’s
environment change over time, and the underlining MDP needs to be updated.

Robotics pose unique data management challenges. Consider a robot that needs to act autonomously in
the world for long periods of time, without human intervention or without access to powerful computers. For
example, a robot operating on Mars has to wait for several minutes before receiving a response back from
Earth, due to the sheer distance between the two planets. Further, the sheer amount of sensor data of modern
robotics applications are very demanding. For example, an autonomous vehicle, can produce more than 30
GB/hour of data [37]. For a robot to be autonomous, it must be equipped with the ability to store a large
amount of sensor data (from its walks, interactions, and findings), create complex knowledge representations
about the world, and use it to solve large analytics, optimization and decision-making problems, in order to
make autonomous plans for the future.

As machine-learned software becomes more ubiquitous and accessible to decision makers who can impact
our society, and robots more and more part of our everyday life, there will be a growing need for systems that
ensure fair, responsible, and sustainable solutions. There is growing interest to develop Socially Responsible
Investments (SRI) [1, 2], in line with the 2015 UN Sustainable Development Goals [3]. For example, in
SRI, investors are not only interested in reducing the risk of a loss, but also that their investments meet
the ESG [47] (Environmental, Social and Governance) standards. Machine learning models can exhibit
undesirable behavior [46], from financial loss and unfair classification and predictions, to automated systems
and robots that could potentially harm humans. Typically, a lot of training data is required to increase the
confidence on the good behavior of the resulting model. Thus, an important question is how to efficiently
train a model that requires complex constraints on large training sets.
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