

Metric Spaces for Temporal Information Retrieval

Matteo Brucato¹, Danilo Montesi² ¹University of Massachusetts Amherst, USA ²University of Bologna, Italy

> Presented by: Matteo Brucato matteo@cs.umass.edu

Time and Temporal Scope

- Time is an ubiquitous **dimension** of nearly every collection of documents
 - Digital libraries, news stories, tweets, the Web, ...
- Documents
 - Meta-level: creation, publication date, ...
 - Content-level: Periods of time mentioned in the text
 ⇒ The document temporal scope
- Queries
 - Meta-level: issue date, ...
 - Content-level: **Periods of time** mentioned in the query
 - ⇒ The query temporal scope

Temporal Similarity: Motivation

• Textual similarity

- Similarity based on **term statistics**
- Not adequate for **temporal queries**:

"results elections 2008" "best movies last year"

- "2008" and "last year" are considered **terms** and searched **literally** in the documents
- ⇒ We need to model **temporal similarity**

Temporal Intervals

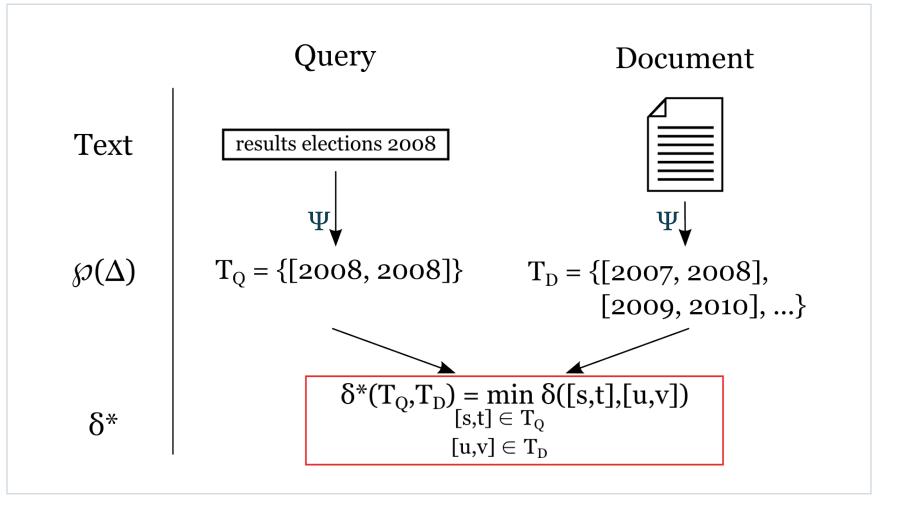
- Temporal **intervals** are semantically rich:
 - Synonymy:
 - "2013" = "last year" = "the year after 2012"
 - Polysemy:
 - "every friday", "yearly", "super bowl"
 - Algebraic structure (to correlate temporal scopes):
 - overlapping
 - containment
 - Distance

 \Rightarrow We can **exploit** this to improve IR models

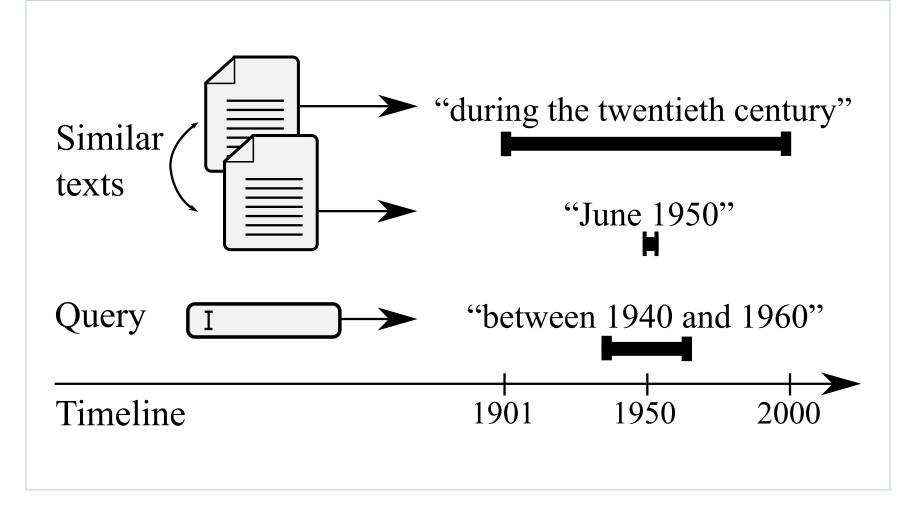
Temporal Domain

CHRONON

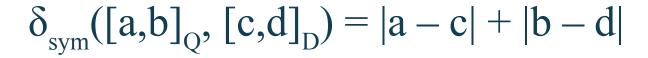
The *smallest* discrete unit of time (e.g., a second, a day, a year)

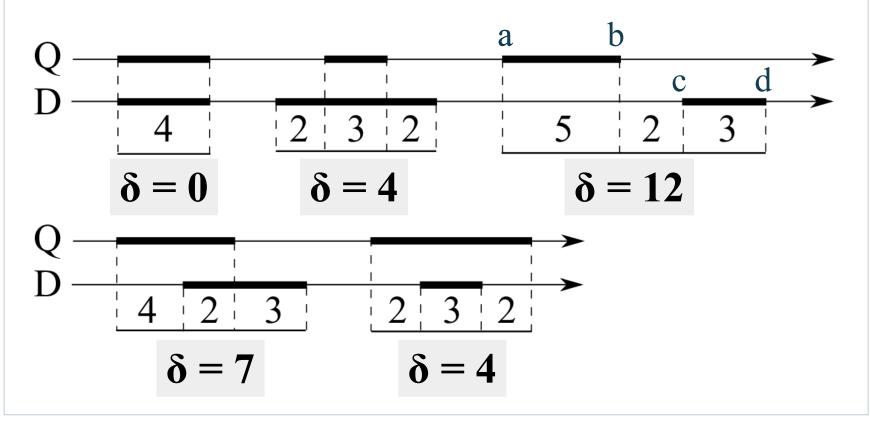

TEMPORAL DOMAIN

 $\Delta = [t_{\min}, t_{\min}], ..., [1990, 1991], [1990, 1992], ..., [t_{\min}, t_{\max}]$

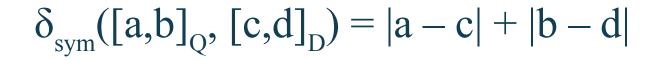

INTERPRETATION FUNCTION Ψ : TIMEX $\rightarrow \wp(\Delta)$ where TIMEX is the set of all possible time expressions

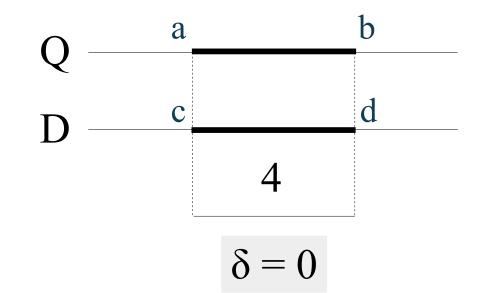
Temporal scope of a document D (or a query Q) $T_D = \{ [1990, 1999], [1995, 1997], [2001, 2002] \}$ $T_O = \{ [1991, 2001], [2002, 2003] \}$


The temporal similarity δ^{\ast}

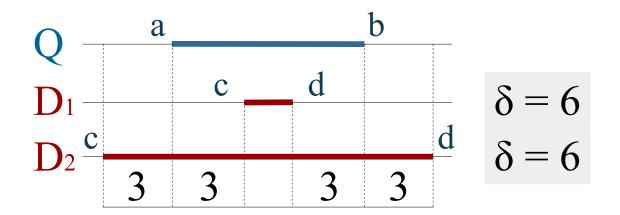


How can we effectively model δ ?



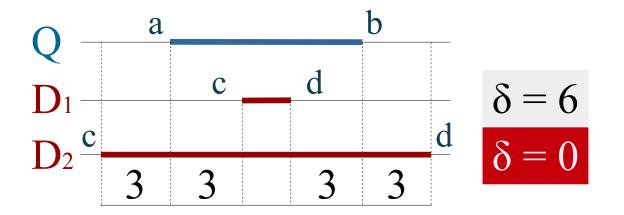

Simple solution: Manhattan Distance

Reasonable?



This looks intuitively correct

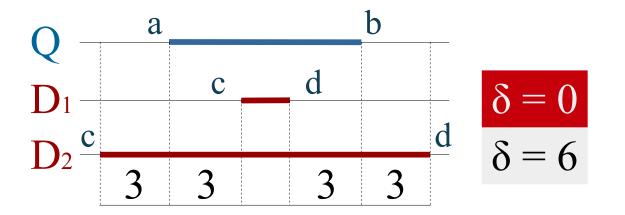
Manhattan distance: Anomaly


 $\delta_{sym}([a,b]_Q, [c,d]_D) = |a-c| + |b-d|$

The two documents would have the same distance from the query...

Distance reflecting query coverage

 $\delta_{cov(Q)}([a,b]_Q, [c,d]_D) = (b-a) - (\min\{b,d\} - \max\{a,c\})$



More appropriate for **"narrow" time queries:**

- Query represents the **narrowest time interval** the user is willing to accept
- Distance reflects query coverage

Distance reflecting document coverage

 $\delta_{cov(D)}([a,b]_Q, [c,d]_D) = (d-c) - (\min\{b,d\} - \max\{a,c\})$

More appropriate for **"broad" time queries:**

- Query represents the **broadest time interval** the user is willing to accept
- Distance reflects document coverage

Generalized metrics

• Metrics (e.g. Manhattan distance):

- Non-negativity: $\delta(x,y) \ge 0$
- Coincidence:
- *Symmetry*:
- Triangle inequality: $\delta(x,z) \le \delta(x,y) + \delta(y,z)$

 $\delta(x,y) = 0 iff x = y$ $\delta(x,y) = \delta(y,x)$

- The 2 new distances are **hemimetrics**:
 - <u>No symmetry</u>
 - <u>Partial coincidence</u>:
 - $\delta(x,x) = 0$
 - but we allow **y**'s, $\mathbf{y} \neq \mathbf{x}$, such that: $\delta(\mathbf{x}, \mathbf{y}) = \mathbf{0}$
- Interesting property:

 $\delta_{\text{sym}}(\mathbf{x}, \mathbf{y}) = \delta_{\text{cov}(D)}(\mathbf{x}, \mathbf{y}) + \delta_{\text{cov}(Q)}(\mathbf{x}, \mathbf{y})$

Combining text and time scores

• Temporal similarity:

 $\sin_{\delta^*}(Q, D) = \exp \{-\delta^*(T_Q, T_D)\}$

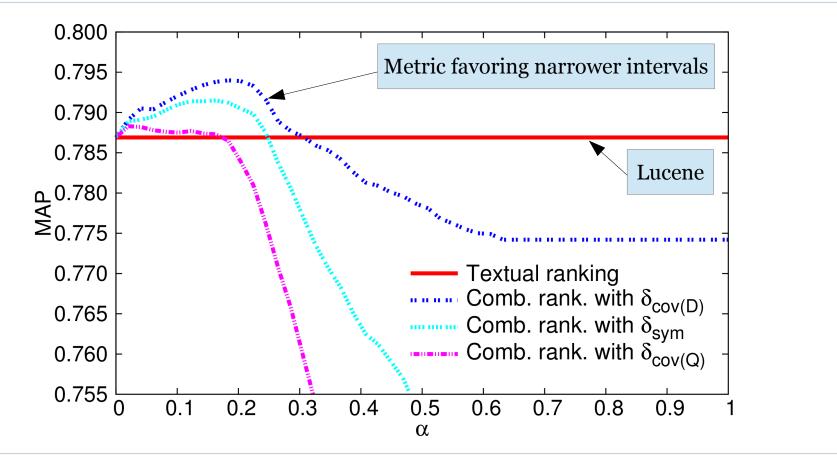
- Two models of relevance
 - *Textual similarity*: sim_{kw}
 - Temporal similarity: sim_{δ^*}
- Combining them:

 $sim(Q, D_i) = (1 - \alpha) sim_{kw}(Q, D_i) + (\alpha) sim_{\delta^*}(Q, D_i)$

where α is a combination parameter in [0,1]

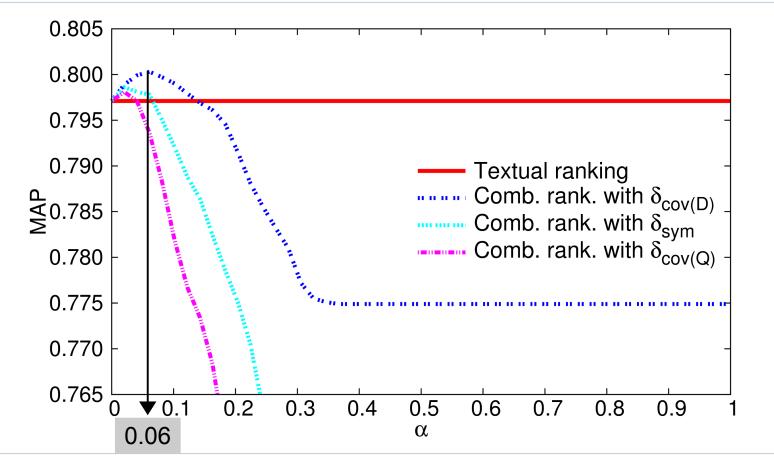
Effectiveness Evaluation

Test Collection


- TREC Novelty 2004:
 - 1808 articles from New York Times and other newswires
 - From January 1996 through September 2000 (almost 5 years)
 - "traditional" (and "novelty") relevance assessments
 - HeidelTime¹ and TIMEN² libraries to extract and normalize temporal expressions (aka "timexes")

	Documents	Topic Descriptions	Topic Narratives
Number	1808	50	50
% containing timexes	75%	22%	10%

¹https://code.google.com/p/heideltime/ ²http://code.google.com/p/timen/


Comparing textual and combined ranking (1/2)

- *Textual queries*: Topic **titles**
- *Temporal queries*: All extracted temporal intervals

Comparing textual and combined ranking (2/2)

- *Textual queries*: Topic **descriptions**
- *Temporal queries*: All extracted temporal intervals

Impact on top-*k* for **all** queries

Considering all queries, temporal and non-temporal:

Textual Ranking ($\alpha = 0$) Combined Ranking ($\alpha = 0.06$)

k	P@k	R@k	MAP@k
5	0.84	0.17	0.16
10	0.80	0.33	0.30
20	0.77	0.64	0.57

k	P@k	R@k	MAP@k
5	0.84	0.17	0.16
10	0.81	0.33	0.31
20	0.78	0.65	0.58

Best combination weight from previous experiment

Impact on top-*k* for **temporal** queries only

Considering only the 11 temporal queries:

Textual Ranking ($\alpha = 0$) Combined Ranking ($\alpha = 0.06$)

k	P@k	R@k	MAP@k	k	P@k	R@k	MAP@k
5	0.83	0.18	0.17	5	0.81	0.18	0.17
10	0.79	0.34	0.31	10	0.81	0.35	0.32
20	0.76	0.66	0.57	20	0.79	0.69	0.60

Worst on temporal queries

Best combination weight

from previous experiment

Better on temporal queries

Summary of contributions

- Model for temporal scopes of documents and queries
- Three novel metrics for temporal scope similarity
- Ranking model combining textual and temporal scores
- Experimental evaluation of the effectiveness improvements over a text-only ranking
- The asymmetry and partial coincidence used for modeling the temporal similarity might have a meaning beyond just the time dimension

Closely Related Work

- Among the many interesting works on Temporal IR, these address the task from a very similar perspective:
 - Berberich, Bedathur, Alonso, Weikum in *Advances in Information Retrieval*, 2010:
 - Language modeling approach
 - Worse effectiveness with **no uncertainty** and **inclusive mode**
 - Khodaei, Shahabi, Khodaei in *International Journal of Next-Generation Computing*, 2012:
 - Emphasis on **index structures** for fast top-k retrieval
 - Ranking model considering **only overlap** (our metrics include the concept of overlap: they are more general)

Thank you! Questions?

Matteo Brucato¹, Danilo Montesi² ¹University of Massachusetts Amherst, USA ²University of Bologna, Italy

Presented by: Matteo Brucato matteo@cs.umass.edu